Textbook Page 622 #1 to 4 ANSWERS

1. (a) Co(s) → Co ²⁺ (aq) + 2 e ⁻	This is the oxidation half-reaction. Co(s) is the reducing agent.
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	This is the reduction half-reaction. Cu ²⁺ (aq) is the oxidizing agent.

The reducing agent [Co(s)] is lower in the redox table than the oxidizing agent [Cu²⁺(aq)]. Therefore, the reaction is spontaneous.

(b) $Br_2(l) + 2 e^- \rightarrow 2 Br^-(aq)$	This is the reduction half-reaction. $Br_2(I)$ is the oxidizing agent.
$2 I^{-}(aq) \rightarrow I_{2}(s) + 2 e^{-}$	This is the oxidation half-reaction. I⁻(aq) is the reducing agent.

The reducing agent $[I^-(aq)]$ is lower in the redox table than the oxidizing agent $[Br_2(I)]$. Therefore, the reaction is spontaneous.

(c) Ni(s) \rightarrow Ni ²⁺ (aq) + 2 e ⁻	This is the oxidation half-reaction. Ni(s) is the reducing agent.
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	This is the reduction half-reaction. Zn ²⁺ (aq) is the oxidizing agent.

The reducing agent [Ni(s)] is higher in the redox table than the oxidizing agent [$Cu^{2+}(aq)$]. Therefore, the reaction is not spontaneous.

2. The species present are Cu(s) , $H^+(aq)$, $CI^-(aq)$, $H_2O(I)$.

The strongest oxidizing agent is $H^{+}(aq)$.

The strongest reducing agent is Cu(s).

The reaction is not spontaneous [Cu(s) is higher than $H^{+}(aq)$ in the redox table].

3. The species present are Ca(s), H₂O(l). The strongest oxidizing agent is H₂O(l). The strongest reducing agent is Ca(s). The reaction is spontaneous [Ca(s) is lower than H₂O(l) in the redox table]. SOA: 2 H₂O(l) + 2 e⁻ → H₂(g) + 2 OH⁻(aq) SRA: Ca(s) → Ca²⁺(aq) + 2 e⁻ The calcium is oxidized.

 $2 H_2O(I) + Ca(s) \rightarrow H_2(g) + 2 OH^-(aq) + Ca^{2+}(aq)$

4. The species present are $K^{+}(aq)$, $MnO_{4}^{-}(aq)$, $Cr^{2+}(aq)$, $SO_{4}^{2-}(aq)$, $H_{2}O(I)$, $H^{+}(aq)$. The strongest oxidizing agent is $MnO_{4}^{-}(aq) + H^{+}(aq)$. The strongest reducing agent is $Cr^{2+}(aq)$.

The reaction is spontaneous $[Cr^{2+}(aq) \text{ is lower than } MnO_4^{-}(aq) + H^+(aq) \text{ in the redox table}].$

SOA: $MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \rightarrow Mn^{2+}(aq) + 4 H_2O(I)$ SRA: $Cr^{2+}(aq) \rightarrow Cr^{3+}(aq) + e^-$

Balance the charge transfer.

SOA × 1 =
$$MnO_4^{-}(aq) + 8 H^{+}(aq) + 5 e^{-} \rightarrow Mn^{2+}(aq) + 4 H_2O(I)$$

SRA × 5 = 5 Cr²⁺(aq) → 5 Cr³⁺(aq) + 5 e^{-}

 $MnO_{4}^{-}(aq) + 8 H^{+}(aq) + 5 Cr^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4 H_{2}O(I) + 5 Cr^{3+}(aq)$